

 Navigation

 	
 index

 	
 dragon tasks |

 	
 routing table |

 	
 next |

 	Stupeflix Tasks API 0.1 documentation

Stupeflix Tasks API Documentation

The REST API is the interface to access the Stupeflix tasks system.

The API is versioned. You should always use the newest version of the API, but
older versions will never be removed.

The base URL of the tasks system is https://dragon.stupeflix.com/. So for
example the full URL for the method /foo/bar in the API Reference API is
https://dragon.stupeflix.com/v2/foo/bar.

Contents:

	API Reference
	General notes

	Authentication
	Secret key

	Api key + referrer

	HTTP Status codes

	Tasks definitions

	Tasks statuses format

	Tasks results

	Tasks API methods

	Storage API methods

	Storage systems
	persistent

	volatile

	youtube

	s3_signed

	Callbacks and Errbacks

	Tasks Reference (v2)
	audio.beats

	audio.convert

	audio.info

	audio.waveform

	html.scrape

	image.gif

	image.info

	image.strip

	image.thumb

	video.convert

	video.create

	video.info

	video.reverse

	video.strip

	video.thumb

	video.upload.fb

	video.upload.vimeo

	video.upload.youtube

	History
	10/02/2013 – /v2 API

	09/04/2013 – /v1 API

Indices and tables

	Index

	Search Page

 Copyright 2013, Luper Rouch.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 dragon tasks |

 	
 routing table |

 	
 next |

 	
 previous |

 	Stupeflix Tasks API 0.1 documentation

API Reference

General notes

All requests are done over SSL.

All strings must be UTF-8 encoded.

POST requests parameters are passed in JSON-encoded bodies.

All dates are in ISO8601 [http://en.wikipedia.org/wiki/ISO_8601] format.

Authentication

Requests that create tasks such as POST /v2/create require
authentication. There are two methods to authenticate requests:

Secret key

This kind of authentication should only be used for server to server requests,
as it exposes your secret key.

For POST and DELETE requests, the secret key can be passed as a top level
“secret” key in the JSON body:

{
 "secret": "123456",
 "tasks": {
 "task_name": "image.info",
 "url": "http://files.com/image.jpg"
 }
}

The secret key can also be passed via the Authorization header. The key
should be prefixed by the string Secret, with a whitespace separating the
two strings:

Authorization: Secret 123456

For GET requests, the secret key must be passed in the querystring:

https://dragon.stupeflix.com/v2/storage/files?secret=123456

Api key + referrer

As for Secret key authentication, the api key can be passed in the
request JSON body or the Authorization header:

	in the JSON body:

{
 "api_key": "654321",
 "tasks": {
 "task_name": "image.info",
 "url": "http://files.com/image.jpg"
 }
}

	in the Authorization header:

Authorization: Api-Key 654321

The Referrer header of the request must also be in your account’s
whitelist.

This kind of authentication is what you should use in your javascript code, but
be careful as requests can easilly be forged to fake the Referrer header.

HTTP Status codes

	200

	Operation was successful.

	400

	Invalid request. The response body contains a description of the errors,
for example if you forgot the tasks parameter in a
POST /v2/create request:

{
 "status": "error",
 "errors": [
 {
 "name": "tasks",
 "location": "body",
 "description": "tasks is missing"
 }
]
}

	401

	Invalid credentials, or account limits reached.

	503

	The system is temporarily down and the client should retry later.

Tasks definitions

Task are defined by objects with at least a “task_name” key. Storage systems
parameters can be passed in the “task_store” key. Other keys contain the task
parameters. Here is an example of a image.info task definition, with the
result stored on the volatile storage system:

{
 "task_name": "image.info",
 "task_store": {
 "type": "volatile"
 },
 "url": "http://files.com/image.jpg"
}

Tasks statuses format

Tasks statuses are objects of the form:

{
 "status": "executing",
 "key": "5OYA5JQVFIAHYOMLQG5QV3U33M",
 "progress": 90,
 "events": {
 "started": "2013-04-03T15:47:27.707526+00:00",
 "queued": "2013-04-03T15:47:27.703674+00:00"
 }
}

Statuses contain at minimum the following keys:

	“status”: the current step of the task in the execution pipeline, one of
“queued”, “executing, “success” or “error”

	“key”: the server-side key used to identify the task

	“progress”: a value representing task progress; its type depends on the
task and could be anything that is JSON-encodable

	
	“events”: an object containing chronological events of the task:

	
	“queued”: date at which the task was queued

	“started”: date at which the task has been attributed to a worker

	“completed”: completion date of the task

When a task completes successfully (with "status": "success"), its status
contains an additional “result” key, for example:

{
 "status": "success",
 "progress": null,
 "events": {
 "completed": "2013-10-31T14:54:52.689272+00:00",
 "queued": "2013-10-31T14:54:51.987459+00:00"
 },
 "key": "UM6EFJKQWMVON5N3CBKPV52NHE",
 "result": {
 "exposure_time": 0.00156,
 "date_time": "2009:11:02 01:21:55",
 "content_type": "image/jpeg",
 "flash": false,
 "height": 1320,
 "width": 1918,
 "iso_speed": 640,
 "focal_length": 2800,
 "alpha": false,
 "rotation": null,
 "type": "image"
 }
}

Tasks that ended on an error (with "status": "error") will return a
status with an “error” key. “error” can have two forms:

	a string containing the error message

	for input parameters validation errors, an object describing the
validation problems, for example:

{
 "status": "error",
 "progress": null,
 "events": {
 "completed": "2013-09-20T12:56:49.385937+00:00",
 "queued": "2013-09-20T12:56:49.369911+00:00"
 },
 "key": "QJZTXA3LNZKQ6X4RPGQ5EHRSMI",
 "error": {
 "parameters": {
 "url": [
 "this field is required"
]
 }
 }
}

Some tasks also support partial results, that are sent before the end of the
task. Partial results are like full results, but their status is “executing”
and the “result” mapping only contains a subset of the final result.

Here is an example partial result for the video.create task. Note that
“result” only contains the “duration” and “preview” keys, while the final
result would also contain the URLs of the final video and thumbnail image in
the “export” and “thumbnail” keys:

{
 "status": "executing",
 "result": {
 "duration": 10,
 "preview": "http://bill.stupeflix.com/storage/flvstreamer/222/LY5XZIPILG6WKKIAGQAB4RLHBY/360p/preview.flv"
 },
 "key": "LY5XZIPILG6WKKIAGQAB4RLHBY",
 "progress": 100,
 "events": {
 "started": "2013-11-16T06:02:55.669278+00:00",
 "queued": "2013-11-16T06:02:55.667394+00:00"
 }
}

Tasks results

By default, output files are stored forever on Amazon S3 and served through Amazon Cloudflare. Other storage
backends are available, see Storage systems for a complete reference.

Tasks API methods

	
POST /v2/create

	Queue one or more tasks and return a list of tasks status.

Example request:

{
 "tasks": [
 {"task_name": "image.info", "url": "http://files.com/image.jpg"},
 {"task_name": "image.thumb", "url": "http://files.com/image.jpg"}
]
}

Example response:

[
 {
 "status": "queued",
 "events": {"queued": "2013-04-03T15:47:27.703674+00:00"},
 "key": "6GRQ3H5EHU7GXUTIOSS2GUDPGQ"
 },
 {
 "status": "queued",
 "events": {"queued": "2013-04-03T15:47:27.703717+00:00"},
 "key": "5OYA5JQVFIAHYOMLQG5QV3U33M"
 }
]

	Request JSON Object:

		
	tasks – a list containing the definitions of the tasks to execute. The method
also accepts a single task definition for convenience.

	block – a boolean indicating if the call should return immediately with the
current status of the tasks, or wait for all tasks to complete and
return their final status.

	
POST /v2/create_stream

	Queue one or more tasks, and stream their status updates.

Example request:

{
 "tasks": [
 {"task_name": "hello", "name": "John"},
 {"task_name": "hello", "name": "Jane"},
]
}

Example response:

[{"status": "queued", "events": {"queued": "2013-04-03T15:47:27.703674+00:00"}, "key": "6GRQ3H5EHU7GXUTIOSS2GUDPGQ"}, {"status": "queued", "events": {"queued": "2013-04-03T15:47:27.703717+00:00"}, "key": "5OYA5JQVFIAHYOMLQG5QV3U33M"}]
{"status": "executing", "events": {"started": "2013-04-03T15:47:27.707526+00:00", "queued": "2013-04-03T15:47:27.703674+00:00"}, "key": "6GRQ3H5EHU7GXUTIOSS2GUDPGQ"}
{"status": "executing", "events": {"started": "2013-04-03T15:47:27.710286+00:00", "queued": "2013-04-03T15:47:27.703717+00:00"}, "key": "5OYA5JQVFIAHYOMLQG5QV3U33M"}
{"status": "success", "result": "Hello John", "events": {"completed": "2013-04-03T15:47:27.726229+00:00", "queued": "2013-04-03T15:47:27.703674+00:00"}, "key": "6GRQ3H5EHU7GXUTIOSS2GUDPGQ"}
{"status": "success", "result": "Hello Jane", "events": {"completed": "2013-04-03T15:47:27.729026+00:00", "queued": "2013-04-03T15:47:27.703717+00:00"}, "key": "5OYA5JQVFIAHYOMLQG5QV3U33M"}

The first line of the response contains a list with the immediate statuses
of the tasks. The list is in the same order as the tasks parameter, to
allow the client to know which key correspond to which task.

The next lines contains interleaved statuses of the two tasks. The response
is closed when all the tasks have finished.

	Request JSON Object:

		
	tasks – a list containing the definitions of the tasks to execute.

	
GET /v2/status

	Query the status of one or more tasks.

Example request:

https://dragon.stupeflix.com/v2/status?tasks=6GRQ3H5EHU7GXUTIOSS2GUDPGQ&tasks=5OYA5JQVFIAHYOMLQG5QV3U33M&block=true

The response contains a list of task statuses, see POST /v2/create
for a response example.

	Query Parameters:

		
	tasks – one or more tasks keys.

	block – a boolean indicating if the call should return immediately with the
current status of the task, or wait for all tasks to complete and
return their final status.

	details – if this boolean is true, return more details in the statuses objects
(tasks parameters, storage details, etc...).

	
POST /v2/status

	Same as GET /v2/status but using POST semantics. Useful when there
are too much tasks to query and the querystring size limit is reached.

	
GET /v2/status_stream

	Get status streams of one or more tasks.

Example request:

https://dragon.stupeflix.com/v2/stream?tasks=6GRQ3H5EHU7GXUTIOSS2GUDPGQ&tasks=5OYA5JQVFIAHYOMLQG5QV3U33M

See POST /v2/create_stream for a description of the response.

	Query Parameters:

		
	tasks – one or more tasks keys.

	
POST /v2/status_stream

	Same as GET /v2/status_stream but using POST semantics. Useful when
there are too much tasks to query and the querystring size limit is
reached.

Storage API methods

	
GET /v2/storage/files/(path)

	List tasks output files.

The response is a JSON mapping containing the lists of files and
directories, and storage space used by these files:

{
 "files": [
 {
 "name": "dragon-image.thumb-IeWutW",
 "size": 4293,
 "last_modified": "2013-10-28T20:22:21.000Z"
 }
],
 "directories": [
 "XDJC6DIS5UDSFBBOLXWMN27ORI/"
],
 "usage": 4293
}

	Parameters:	
	path – the path of the directory to list.

	Query Parameters:

		
	recursive – a boolean value indicating if path sub-directories must be traversed
too.

	
DELETE /v2/storage/files/(path)

	Delete tasks output files.

If path is empty, recursively delete all output files.

If path points to a directory, recursively delete all output files under
this directory.

If path points to a file, delete this file.

Files can also be targeted by date with the from, to and max_age
parameters. from and to dates must be ISO8601 [http://en.wikipedia.org/wiki/ISO_8601] date time strings; if they don’t
include a timezone they will be interpreted as UTC.

The urls parameter also allows to delete files from absolute URLs.

The response is a JSON mapping containing the list of deleted files, the
number of bytes freed and the (approximate) total space used on the
persistent storage after the operation:

{
 "deleted": [
 "BCSIT5KDDQQTC7GZ6TBJE7NFIU/dragon-image.thumb-9b0E9P",
 "XDJC6DIS5UDSFBBOLXWMN27ORI/dragon-image.thumb-IeWutW"
],
 "freed": 1257,
 "usage": 6578
}

	Parameters:	
	path – the path of the file or directory to delete.

	Request JSON Object:

		
	urls – a list of absolute URLs to delete. If this parameter is used, all other
selection parameters (path, from, to, max_age) are ignored.

	dry_run – if this boolean is true, return the files that would be deleted, but
don’t actually delete them (default: false).

	from – the date from which point to delete files.

	to – the date up to which point to delete files.

	max_age – files older than max_age days are deleted.

	
POST /v2/storage/expiration

	Set lifetime of tasks output files.

	Request JSON Object:

		
	days (int) – the number of days after which files are deleted in the tasks output
storage. A value of 0 means that files are never deleted.

	
GET /v2/storage/expiration

	Get the current lifetime of tasks output files.

The response is the current lifetime of files, in days. A value of 0 means
that files are never deleted.

 Copyright 2013, Luper Rouch.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 dragon tasks |

 	
 routing table |

 	
 next |

 	
 previous |

 	Stupeflix Tasks API 0.1 documentation

Storage systems

Storage systems, introduced in the /v2 API, allow you to choose
where your task output files are stored.

Here is an example request storing two thumbnails in the
persistent and volatile storages:

{
 "tasks": [
 {
 "task_name": "image.thumb",
 "task_store": {
 "type": "volatile"
 },
 "url": "http://files.com/image.jpg"
 },
 {
 "task_name": "image.thumb",
 "task_store": {
 "type": "persistent"
 },
 "url": "http://files.com/image.jpg"
 }
]
}

persistent

This is the default storage system, it stores files permanently on Cloudfront.

You can change the lifetime of your files with
POST /v2/storage/expiration.

You can manage the files in your persistent storage with the
Storage API methods.

Additional costs are applied to the persistent storage, please read our
pricing [https://developer.stupeflix.com/pricing/#hosting].

volatile

Files are stored for a week on S3, and permanently deleted.

youtube

Upload videos on Youtube. It requires the following parameters:

	access_token (string) - Target user’s access token with upload
authorization.

	developer_key (string) -Youtube developer key of a registered app.

	title (string) - Video title.

The following optional parameters are also accepted:

	description (string) - Video description.

	tags (list of strings) - List of video tags.

	category_id (integer) - Video category ID number.

	privacy_status (string) - Privacy status of the video. Accepted
values are “public”, “private” and “unlisted” (default: “public”).

s3_signed

Upload to S3 signed URLs. It requires the following parameters:

	url (string) - the S3 signed URL to upload to.

 Copyright 2013, Luper Rouch.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 dragon tasks |

 	
 routing table |

 	
 next |

 	
 previous |

 	Stupeflix Tasks API 0.1 documentation

Callbacks and Errbacks

All tasks accept a url_callback and url_errback argument, that allows
to specify a HTTP endpoint that will be called when the task is complete.

This alleviates the need to poll POST /v2/status to check if a task was
completed and simplifies asynchronous code if you need to queue many tasks at
once.

The callback endpoint will receive a POST containing the full task status as
soon as the task ends (the same JSON that you would get on
POST /v2/status). Note that the request is not form-encoded, the POST
request body contains directly the status in JSON.

Warning

If you poll POST /v2/status just after receiving the callback, it
will most likely return an “executing” status. This is expected, because it
takes some time for the status to propagate to the database. This is also
unneeded, since the final status is contained in the callback request body.

 Copyright 2013, Luper Rouch.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 dragon tasks |

 	
 routing table |

 	
 next |

 	
 previous |

 	Stupeflix Tasks API 0.1 documentation

Tasks Reference (v2)

audio.beats

	

	Find beats in an audio file.

	Parameters:	
	url_callback (string) – URL to callback when the task completes successfully. See Callbacks and Errbacks for details.

	url_errback (string) – URL to callback when the task fails. See Callbacks and Errbacks for details.

	url (string) – URL of the audio file

	Output Values:	
	beats (object) – An array containing the timestamps of the detected beats, in seconds

	duration (integer) – The processed audio file duration in seconds

	downbeats (object) – An array containing the timestamps of the detected downbeats, in seconds

audio.convert

	

	Transcode audio file (mp3, vorbis), and return audio duration.

	Parameters:	
	url_callback (string) – URL to callback when the task completes successfully. See Callbacks and Errbacks for details.

	url_errback (string) – URL to callback when the task fails. See Callbacks and Errbacks for details.

	url (string) – URL of the audio file to be converted.

	codec (string) – Desired codec for the output file. (choices: 'mp3', 'vorbis', 'aac') (default: u'mp3')

	force (boolean) – Force encoding. (default: False)

	Output Values:	
	duration (float) – Duration of the audio file in seconds.

	content_type (string) – Output file content type.

	Output Files:	
	output – URL of the output file.

audio.info

	

	Return duration and codec of an audio file.

	Parameters:	
	url_callback (string) – URL to callback when the task completes successfully. See Callbacks and Errbacks for details.

	url_errback (string) – URL to callback when the task fails. See Callbacks and Errbacks for details.

	url (string) – URL of the audio file to be scanned.

	Output Values:	
	duration (float) – Duration of the audio file in seconds, rounded to 1/100th second.

	content_type (string) – Content-type of the audio file.

	codec (string) – Codec of the audio file.

audio.waveform

	

	Create a waveform image from an audio file.

	Parameters:	
	url_callback (string) – URL to callback when the task completes successfully. See Callbacks and Errbacks for details.

	url_errback (string) – URL to callback when the task fails. See Callbacks and Errbacks for details.

	url (string) – URL of the audio file to be scanned.

	width (integer) – (default: 1024)

	height (integer) – (default: 60)

	vmargin (integer) – Vertical margin. (default: 0)

	fill (string) – Color of the wave-form. (default: u'#000000')

	background (string) – Color of the background. (default: u'#FFFFFF')

	start (float) – Seconds to start from. (default: 0.0)

	end (float) – Generate waveform up to this point, in seconds.

	format (string) – Output image format. (choices: 'png', 'jpeg') (default: u'jpeg')

	Output Values:	
	duration (float) – Duration of the audio file in seconds.

	width (integer) –

	height (integer) –

	content_type (string) –

	Output Files:	
	output – URL of the output file.

html.scrape

	

	Scrape html webpage to return videos & images found

	Parameters:	
	url_callback (string) – URL to callback when the task completes successfully. See Callbacks and Errbacks for details.

	url_errback (string) – URL to callback when the task fails. See Callbacks and Errbacks for details.

	url (string) – URL of the html page

	Output Values:	
	hits (object) –

	page_title (string) –

image.gif

	

	Create an animated GIF from a list of images.

	Parameters:	
	url_callback (string) – URL to callback when the task completes successfully. See Callbacks and Errbacks for details.

	url_errback (string) – URL to callback when the task fails. See Callbacks and Errbacks for details.

	images (list of strings) – The list of image URLs that will be used to create the animated GIF.

	loop (integer) – The number of loops of the GIF, 0 means to loop forever, and -1 no loop. (default: 0)

	frame_duration (float) – The duration in seconds during which each image will be shown when the GIF is playing, rounded to 1/100th of a second. (default: 0.1)

	width (integer) – The pixel width of the output GIF. Leave empty to use source images width.

	height (integer) – The pixel height of the output GIF. Leave empty to use source images height.

	Output Files:	
	output – The URL of the output GIF.

image.info

	

	Return image file information.

	Parameters:	
	url_callback (string) – URL to callback when the task completes successfully. See Callbacks and Errbacks for details.

	url_errback (string) – URL to callback when the task fails. See Callbacks and Errbacks for details.

	url (string) – URL of the image file to be scanned.

	Output Values:	
	content_type (string) – Content-Type of the image file.

	type (string) – Type of the file.

	width (integer) –

	height (integer) –

	alpha (boolean) –

	exif_orientation (integer) – The exif orientation that should be applied to the image to see it as it was shot, as an integer x, where:

	x=1: The 0th row is at the visual top of the image, and the 0th column is the visual left-hand side.

	x=2: The 0th row is at the visual top of the image, and the 0th column is the visual right-hand side

	x=3: The 0th row is at the visual bottom of the image, and the 0th column is the visual right-hand side.

	x=4: The 0th row is at the visual bottom of the image, and the 0th column is the visual left-hand side.

	x=5: The 0th row is the visual left-hand side of the image, and the 0th column is the visual top.

	x=6: The 0th row is the visual right-hand side of the image, and the 0th column is the visual top.

	x=7: The 0th row is the visual right-hand side of the image, and the 0th column is the visual bottom.

	x=8: The 0th row is the visual left-hand side of the image, and the 0th column is the visual bottom.

	rotation (float) – The rotation that should be applied to the image to see it as it was shot, in degrees. (None if a flip is required or info is not present in exif)

	date_time (string) –

	flash (boolean) –

	focal_length (float) –

	iso_speed (float) –

	exposure_time (float) –

image.strip

	

	Create an image strip of custom dimensions by concatenating images.

	Parameters:	
	url_callback (string) – URL to callback when the task completes successfully. See Callbacks and Errbacks for details.

	url_errback (string) – URL to callback when the task fails. See Callbacks and Errbacks for details.

	urls (MultiHttpFileField) – Array of the source images URLs.

	width (integer) – Pixel width of each frame stitched into film strip.

	height (integer) – Pixel height of each frame stitched into film strip.

	crop (boolean) – If false, video frames fit each strip section. If true, video frames fill each strip section, aligning centers. (default: False)

	wrap (integer) – Number of images that can be stitched horizontally before stitching starts onto a new line. Use it to create a two dimensional film strip, with count = int * wrap. If left unspecified, all frames are stitched on a single line.

	format (string) – Output image file format (choices: 'jpeg', 'png') (default: u'jpeg')

	Output Values:	
	count (integer) – Actual number of frames in the output.

	width (integer) – Width of the output image in pixels.

	height (integer) – Height of the output image in pixels.

	content_type (string) – Mime-type of the output image.

	Output Files:	
	output – URL of the output image.

image.thumb

	

	Create a new image of custom dimensions and orientation from an original image.

	Parameters:	
	url_callback (string) – URL to callback when the task completes successfully. See Callbacks and Errbacks for details.

	url_errback (string) – URL to callback when the task fails. See Callbacks and Errbacks for details.

	width (integer) – Desired thumbnail width, in pixels.

	height (integer) – Desired thumbnail height, in pixels

	crop (boolean) – If crop is true, original image fills new image dimensions. If crop is false, original image fits new image dimensions. (default: False)

	url (string) – URL of the source image

	rotation (integer) – A counter clockwise rotation rotation to apply to the thumbnail, in degrees. (choices: 0, 90, 180, 270) (default: 0)

	poster (boolean) – If true, a play icon is added in the center. (default: False)

	format (string) – The output format. (choices: 'jpeg', 'gif', 'png') (default: u'jpeg')

	Output Values:	
	width (integer) – thumbnail width

	height (integer) – thumbnail height

	original_width (integer) – original image width

	original_height (integer) – original height

	Output Files:	
	output – URL of the thumbnail.

video.convert

	

	Create transcoded video file with custom dimensions, and return its
video.info output values.

	Parameters:	
	url_callback (string) – URL to callback when the task completes successfully. See Callbacks and Errbacks for details.

	url_errback (string) – URL to callback when the task fails. See Callbacks and Errbacks for details.

	url (string) – URL of the source video

	width (integer) –

	height (integer) –

	crop (boolean) – Allows croping the video to fit in the output size (default: False)

	audio_codec (string) – Desired audio audio. (choices: 'mp2', 'mp3', 'aac', 'wmav1', 'wmav2') (default: u'aac')

	video_codec (string) – Desired video codec. (choices: 'h264') (default: u'h264')

	video_bitrate (integer) – Desired video bitrate, in kbps. (default: 3000)

	audio_bitrate (integer) – Desired audio bitrate, in kbps. (default: 128)

	sample_rate (integer) – Desired audio sample rate, in kHz. (choices: 22050, 44100, 48000) (default: 44100)

	crf (integer) – Output constant rate factor (video) (default: 23)

	gop (integer) – Output group of picture (GOP) size (default: 250)

	Output Values:	
	content_type (string) – Output file content type.

	width (integer) –

	height (integer) –

	original_width (integer) –

	original_height (integer) –

	duration (float) – Duration of the video file, in seconds.

	frame_rate (float) –

	audio_codec (string) –

	video_codec (string) –

	alpha (boolean) –

	rotation (float) – The counter clockwise rotation that should be applied to the video to see it as it was shot, in degrees.

	Output Files:	
	output – URL of the converted file.

video.create

	

	Create video file(s) from a SXML definition [https://stupeflix-sxml.readthedocs.org/en/latest/] and video profile(s).

	Parameters:	
	url_callback (string) – URL to callback when the task completes successfully. See Callbacks and Errbacks for details.

	url_errback (string) – URL to callback when the task fails. See Callbacks and Errbacks for details.

	definition (string) – SXML video definition

	profile (string) – (default: u'360p')

	preview (boolean) – (default: False)

	export (boolean) – (default: True)

	thumbnail_time (float) – (default: 1.0)

	antialias (integer) – (choices: 1, 2, 4) (default: 4)

	Output Values:	
	duration (float) –

	width (integer) – video width

	height (integer) – video height

	Output Files:	
	preview –

	export –

	thumbnail –

video.info

	

	Return video file information.

	Parameters:	
	url_callback (string) – URL to callback when the task completes successfully. See Callbacks and Errbacks for details.

	url_errback (string) – URL to callback when the task fails. See Callbacks and Errbacks for details.

	url (string) – URL of the video file to be scanned.

	Output Values:	
	content_type (string) – Mime-type of the video file.

	width (integer) – Video width, in pixels.

	height (integer) – Video height, in pixels.

	duration (float) – Video duration, in seconds.

	frame_rate (float) – Video frame rate, in frames per second.

	alpha (boolean) – A boolean indicating if the video has an alpha channel.

	rotation (float) – The rotation that should be applied to the video to see it as it was shot, in degrees.

	audio_codec (string) – Audio codec name.

	video_codec (string) – Video codec name.

video.reverse

	

	Create a reversed video file with custom dimensions, and return its
video.info output values.

	Parameters:	
	url_callback (string) – URL to callback when the task completes successfully. See Callbacks and Errbacks for details.

	url_errback (string) – URL to callback when the task fails. See Callbacks and Errbacks for details.

	url (string) – URL of the source video

	width (integer) –

	height (integer) –

	crop (boolean) – Allows croping the video to fit in the output size (default: False)

	video_codec (string) – Desired video codec. (choices: 'h264') (default: u'h264')

	video_bitrate (integer) – Desired video bitrate, in kbps. Use source bitrate if left empty.

	crf (integer) – Output constant rate factor (video) (default: 23)

	gop (integer) – Output group of picture (GOP) size (default: 250)

	Output Values:	
	duration (float) – Duration of the video file, in seconds.

	Output Files:	
	output – URL of the converted file.

video.strip

	

	Create a film strip image of custom dimensions showing stitched frames of a
video, return video.info output values for original video.

	Parameters:	
	url_callback (string) – URL to callback when the task completes successfully. See Callbacks and Errbacks for details.

	url_errback (string) – URL to callback when the task fails. See Callbacks and Errbacks for details.

	url (string) – URL of the source video.

	width (integer) – Pixel width of each frame stitched into film strip.

	height (integer) – Pixel height of each frame stitched into film strip.

	crop (boolean) – If false, video frames fit each strip section. If true, video frames fill each strip section, aligning centers. (default: False)

	wrap (integer) – Number of video frames that can be stitched horizontally before stitching starts onto a new line. Use it to create a two dimensional film strip, with count = int * wrap. If left unspecified, all frames are stitched on a single line.

	start (float) – Time of first frame extracted from video - by default first frame of video. (default: 0.0)

	end (float) – Time of last frame extracted from video - by default last frame of video.

	count (integer) – Number of frames extracted from video, at equal time intervals between start and end times. (default: 10)

	format (string) – Output image file format (choices: 'jpeg', 'png') (default: u'jpeg')

	Output Values:	
	count (integer) – Actual number of frames in the output.

	width (integer) – Width of the output image in pixels.

	height (integer) – Height of the output image in pixels.

	original_width (integer) – Width of the input video file, in pixels.

	original_height (integer) – Width of the input video file, in pixels.

	duration (float) – Duration of the input video file, in seconds.

	frame_rate (float) – Frame rate of the input video file, in frames per second.

	content_type (string) – Mime-type of the output image.

	Output Files:	
	output – URL of the output image.

video.thumb

	

	Create a reversed video file with custom dimensions, and return its
video.info output values.

	Parameters:	
	url_callback (string) – URL to callback when the task completes successfully. See Callbacks and Errbacks for details.

	url_errback (string) – URL to callback when the task fails. See Callbacks and Errbacks for details.

	url (string) – URL of the source video.

	width (integer) – Width of output image file, in pixels. The default is to use the original video width.

	height (integer) – Height of output image file, in pixels. The default is to use the original video height.

	crop (boolean) – If false, video frame fits output image. If true, video frame fills output image. (default: False)

	time (float) – Timestamp of the video frame to extract, in seconds. (default: 0.0)

	format (string) – Output image file format. (choices: 'jpeg', 'png') (default: u'jpeg')

	poster (boolean) – If true, a play icon is added in the center. (default: False)

	quality (integer) – Output quality, from 1 to 95. (default: 75)

	Output Values:	
	width (integer) – Width of the output image in pixels.

	height (integer) – Height of the output image in pixels.

	original_width (integer) – Width of the input video file.

	original_height (integer) – Width of the input video file.

	duration (float) – Duration of the input video file, in seconds.

	content_type (string) – Mime-type of the output image.

	Output Files:	
	output – URL of the output image.

video.upload.fb

	

	Upload a video to Facebook.

	Parameters:	
	url_callback (string) – URL to callback when the task completes successfully. See Callbacks and Errbacks for details.

	url_errback (string) – URL to callback when the task fails. See Callbacks and Errbacks for details.

	url (string) – URL of the source video.

	access_token (string) – Target user’s access token.

	title (string) – Video title.

	description (string) – Video description.

	privacy (string) – Privacy level of the video. (choices: 'AUTO', 'EVERYONE', 'ALL_FRIENDS', 'FRIENDS_OF_FRIENDS', 'SELF') (default: u'AUTO')

	no_story (boolean) – If set to true, this will suppress feed and timeline story. (default: False)

	api_key (string) – Facebook API key. (default: u'-')

	app_secret (string) – Facebook app secret. (default: u'-')

	Output Values:	
	duration (float) – Duration of the input video file, in seconds.

	Output Files:	
	output – URL of the uploaded video on Facebook.

video.upload.vimeo

	

	Upload a video from user url on Vimeo.
Register your app to get a consumer key and secret [https://developer.vimeo.com/apps].
Then retrieve an access token key and a secret following
these instructions on Oauth for the Vimeo API [https://developer.vimeo.com/apis/advanced#oauth].

You can use either OAuth1 or OAuth2.

	OAuth2 parameter (Vimeo API v3):

	
	oauth2_token

	OAuth1 parameters (Vimeo API v2):

	
	consumer_key

	consumer_secret

	access_token_key

	access_token_secret

	OAuth2 Token requires these privileges:

	
	Edit (to edit titles / descriptions)

	Upload

	Parameters:	
	url_callback (string) – URL to callback when the task completes successfully. See Callbacks and Errbacks for details.

	url_errback (string) – URL to callback when the task fails. See Callbacks and Errbacks for details.

	url (string) – Video url to upload

	title (string) – Video title

	description (string) – Video description

	consumer_key (string) – OAuth1 Application consumer key

	consumer_secret (string) – OAuth1 Application consumer secret

	access_token_key (string) – OAuth1 User access token key

	access_token_secret (string) – OAuth1 User access token secret

	oauth2_token (string) – OAuth2 User access token secret

	Output Values:	
	free_space (integer) –

	uploaded_file_size (integer) –

	output (string) – URL of the uploaded video on Vimeo.

	duration (float) – Duration of the input video file, in seconds.

video.upload.youtube

	

	Upload a video to Youtube using the version 3 of the API with OAuth2 Bearer authentication.
Register your app [https://cloud.google.com/console] and retrieve an access token following these instructions [https://developers.google.com/youtube/v3/guides/authentication].

Otherwise, you can also get a token with us from there [http://developer.stupeflix.com/youtube/]

	Parameters:	
	url (string) – URL of the source video.

	access_token (string) – Target user’s access token with upload authorization.

	developer_key (string) – Youtube developer key of a registered app.

	title (string) – Video title.

	description (string) – Video description.

	tags (list of strings) – (default: [])

	category_id (integer) – Video category ID number.The default value is 22, which refers to the People & Blogs category.

	privacy_status (string) – Privacy status of the video. (choices: 'public', 'private', 'unlisted') (default: u'public')

	url_callback (string) – URL to callback when the task completes successfully. See Callbacks and Errbacks for details.

	url_errback (string) – URL to callback when the task fails. See Callbacks and Errbacks for details.

	Output Values:	
	output (string) – URL of the uploaded video on Youtube.

	duration (float) – Duration of the input video file, in seconds.

 Copyright 2013, Luper Rouch.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 dragon tasks |

 	
 routing table |

 	
 previous |

 	Stupeflix Tasks API 0.1 documentation

History

10/02/2013 – /v2 API

Added support for Storage systems.

Tasks result objects also slightly change in this versions. Details of errors
are now returned in the “error” key, instead of “result”. This avoids mixing
successes and errors in code that doesn’t check the “status” key. See
API Reference for details.

09/04/2013 – /v1 API

This is the first release of our API.

 Copyright 2013, Luper Rouch.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 dragon tasks |

 	
 routing table |

 	Stupeflix Tasks API 0.1 documentation

 Dragon Tasks

 a |
 h |
 i |
 v

 			

 		
 a	

 	
 	
 audio.waveform	
 task

 	
 	
 audio.convert	
 task

 	
 	
 audio.beats	
 task

 	
 	
 audio.info	
 task

 			

 		
 h	

 	
 	
 html.scrape	
 task

 			

 		
 i	

 	
 	
 image.info	
 task

 	
 	
 image.gif	
 task

 	
 	
 image.strip	
 task

 	
 	
 image.thumb	
 task

 			

 		
 v	

 	
 	
 video.info	
 task

 	
 	
 video.thumb	
 task

 	
 	
 video.convert	
 task

 	
 	
 video.strip	
 task

 	
 	
 video.upload.fb	
 task

 	
 	
 video.create	
 task

 	
 	
 video.upload.youtube	
 task

 	
 	
 video.reverse	
 task

 	
 	
 video.upload.vimeo	
 task

 Copyright 2013, Luper Rouch.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 dragon tasks |

 	
 routing table |

 	Stupeflix Tasks API 0.1 documentation

 HTTP Routing Table

 /v2

 			

 		
 /v2	

 	
 	
 GET /v2/status	

 	
 	
 GET /v2/status_stream	

 	
 	
 GET /v2/storage/expiration	

 	
 	
 GET /v2/storage/files/(path)	

 	
 	
 POST /v2/create	

 	
 	
 POST /v2/create_stream	

 	
 	
 POST /v2/status	

 	
 	
 POST /v2/status_stream	

 	
 	
 POST /v2/storage/expiration	

 	
 	
 DELETE /v2/storage/files/(path)	

 Copyright 2013, Luper Rouch.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 dragon tasks |

 	
 routing table |

 	Stupeflix Tasks API 0.1 documentation

Index

 A
 | H
 | I
 | V

A

 	

 	audio.beats (task)

 	audio.convert (task)

 	

 	audio.info (task)

 	audio.waveform (task)

H

 	

 	html.scrape (task)

I

 	

 	image.gif (task)

 	image.info (task)

 	

 	image.strip (task)

 	image.thumb (task)

V

 	

 	video.convert (task)

 	video.create (task)

 	video.info (task)

 	video.reverse (task)

 	video.strip (task)

 	

 	video.thumb (task)

 	video.upload.fb (task)

 	video.upload.vimeo (task)

 	video.upload.youtube (task)

 Copyright 2013, Luper Rouch.
 Created using Sphinx 1.3.5.

 _static/up-pressed.png

_static/comment-bright.png

_static/minus.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/ajax-loader.gif

_static/down.png

README.html

 Navigation

 		
 index

 		
 dragon tasks |

 		
 routing table |

 		Stupeflix Tasks API 0.1 documentation »

Stupeflix Tasks API’s documentation

The documentation is hosted at https://stupeflix-tasks-api.readthedocs.org/.

 © Copyright 2013, Luper Rouch.
 Created using Sphinx 1.3.5.

_static/plus.png

search.html

 Navigation

 		
 index

 		
 dragon tasks |

 		
 routing table |

 		Stupeflix Tasks API 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Luper Rouch.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

_static/comment.png

